High Temperature Pressure Transmitter with Cooling Fins

S K L

Main features

- Measuring ranges 0...1 bar to 0...2000 bar
- All standard signals for industry, hydraulics and pneumatics
- Media temperature range –40°C to 180°C
- Ambient temperature range –40°C to 105°C
- Shock and vibration-resistant > 1000 g shock, > 20 g vibration
- No internal transmitting media (fully welded, "dry" measuring cell)
- Degree of protection from IP65 (special version up to IP69K)
- Compact and robust stainless steel design
- Precision class 0.5 %

Applications

- General industrial applications
- Automotive engineering
- Hydraulics
- Pneumatics
- Plant engineering and automation

Description

The SKL with cooling fins has been designed for applications with higher temperature requirements. Thanks to its stainless steel diaphragm and semiconductor thin-film technology, this pressure transmitter has excellent properties.

The stainless steel diaphragm is fully vacuum-tight, extremely burst-resistant and applicable with all standard media in automotive engineering, hydraulics, pneumatics, etc., as long as they are compatible with stainless steel. Its robust design guarantees high reliability also in rugged conditions. Its modular design offers a variety of signal, thread and connecting options.

The SKL series is suited for application in environments exposed to high thermal load.

Specification										
PRESSURE RANGE										
Measuring range*	p [bar]	1,0	1,6	2,0	2,5	4,0	6,0	10,0		
Overload pressure	p [bar]	6	6	6	6	10	20	20		
Burst pressure	p [bar]	9	9	9	9	15	30	30		
Measuring range*	p [bar]	16	20	25	40	60	100	160		
Overload pressure	p [bar]	40	40	100	100	200	200	400		
Burst pressure	p [bar]	60	60	150	150	300	300	600		
Measuring range*	p [bar]	200	250	400	600	1000	1600	2000		
Overload pressure	p [bar]	400	750	750	840	1200	2400	2400		
Burst pressure	p [bar]	600	1000	1000	1050	1500	3000	3000		
ELECTRICAL PARAMETER		signal			$U_{s} [V_{pc}]$	$R_{\mu}[k\Omega]$	RA [Ω]			
Output signal * and	R _A in Ohm	420 mA	(2-wire, 3-	-wire)	932		acc. to R _A	= < (U _s - 10V) / 0,02 A		
maximum acceptable burder	n R _A	010 V _{pc} (010 Vpc (3-wire)			> 5,0				
		15 V _{pc}			832	> 1,0				
		0.54.5 V	_ ratiometric	2	5 +10%	> 4.7				
Response time * (10-90%)	t [ms]	< 1								
Withstand voltage	U [V _{pc}]	350	option 710	1						
5	- 00-									
ACCURACY										
Accuracy @RT	% of the rang	e ≤ 0,50**								
, 0	BFSL	≤ 0,125								
Non-linearity	% of the rang	e ≤ 0,15								
Repeatability	% of the rang	e ≤ 0,10	** incl. non	linearity, hy	steresis, rep	eatability, ze	ero-offset- a	ind final-offset		
Stability/year	% of the rang	e ≤ 0,10	(acc. to I	EC 61298-2)					
ACCEPTABLE TEMPERATUR	E RANGES									
Measuring medium, always	T [°C]	-40160								
Measuring medium, up to 15	5 min	-40180								
Ambience	T [°C]	-40105								
Storage	T [°C]	-40105								
Compensated range*	T [°C]	-2085								
Temperature coefficient within the compensated range										
Mean TC offset	% of the rang	e ≤ 0,15 / 10	К							
Mean TC range	% of the range $\leq 0,15/10K$									
Total error	% of the range -40° C 2,00%									
	% of the range 105°C 2.00%									
MECHANICAL PARAMETER										
Parts in contact with the measuring medium* stainless steel										
Housing*			stainless st	stainless steel						
Shock resistance	g		1000	acc. to IEC	68-2-32					
Vibration resistance	g		20	acc. to IEC	68-2-6 and	I IEC 68-2-3	6			
Mass	m [g]		~ 250	(depending	g on design)					

CE - conformity EC Directive 89/336/EWG IP system of protection

The IP system of protection as specified in the data sheets generally applies, with their mating plug connected. Relative pressure transmitters usually require a ventilated mating plug and/or cable to aloow for pressure compensation. From a pressure range of 60bar, a ventilated mating plug and/or cable is not necessarily required.

* others upon request

SKL

600

M18×1,5

S K L

High Temperature Pressure Transmitter with Cooling Fins

Electrical Connections* (left: 2-wire, right: 3-wire)

* Custom-made adjustments acc. to pressure connections and connecting options are possible.

TTOUL			
DS4	Electronic Pressure Switch	SMC	Pressure Transmitter with CANopen Interface
DPSX9I	Intrinsically Safe Electronic Pressure Switch for Current	SME	Pressure Transmitter in Miniature Design
DPSX9U	Intrinsically Safe Electronic Pressure Switch for Voltage	SMF	Pressure Transmitter with Flush Diaphragm
PS1	Level Sensor	SMH	High Pressure Transmitter
PSX2	Intrinsically Safe Level Sensor	SML	Pressure Transmitter for Industrial Application
SHP	High Precision Pressure Transmitter	SM0	Pressure Transmitter in Mobile Hydraulics
SIS	Low Pressure Transmitter in Short and Compact Design	SMS	OEM Pressure Transmitter for Hydraulics and Pneumatics
SIL	Low Pressure Transmitter for Industrial Application	SMX	Intrinsically Safe Pressure Transmitter for Industrial Application
SKE	High Temperature Pressure Transmitter with Detached Electronics	TPS	Multi-Function Transmitter for Pressure and Temperature
SKL	High Temperature Pressure Transmitter with Cooling Fins		

Product line

MEGATRON, s.r.o.

Mrštíkova 16 • 100 00 Praha 10 Tel.: 274 780 972 • Fax: 274 780 975 E-mail: info@megatron.cz www.megatron.cz

Series	Output Signal	Pressure Range	e Unit	Pressure Type	Process Connection	HEX	Electr. Connection	Extras	
SKL	20.1	010000	0 PSI	(sr)	U98M	22	KS2	-	
4 20 mA / 2 0 20 mA / 3 4 20 mA / 3 0 10 V 1 5 V 0 6 V 0 5 V 0,5 4,5 V rat 0,5 4,5 V no others	wires 10.0 wires 10.1 wires 10.2 20.0 20.1 20.20 20.4 tiom. 37.0 40.0 AAA		bar BAR kPa KPA MPa MPA PSI PSI kg/cm2 KGC m WC MWS in WC IWS others CCC	ure (g) nce (sr)		MVC/A MVC/C Hirschmann N	Mini H	VA VC IM	
-1 0 -1 +1 0 1,0 0 2,0 0 2,5 0 4	9000100 9000900 0000100 0 0000200 0 0000250 0 0000400 0	10 0001 16 0002 25 0002 40 0004 100 0010 160 0016 200 0020 250 0025 400 0040 600 0060 1600 0160 1600 0160 2000 0200 irs BE	G 1/8 A G 1/4 A G 1/4 A G 1/4 A G 1/4 B G 1/2 B G 1/2 A F 1/2 A G 1/2 A G 1/2 A F 1/2 A G 1/2 A F 1/2	A Shape A A Shape A A Shape E B (Manom.) C (Manom.	G18A 22 G14A 22 G14E 22 G14B 22 G14E 22 G12B 27 G12E 27 18NP 22 14NP 22 U72C 22 U72C 22 U38M 22 U38C 22 U12M 22 M10A 22 M10A 22 M10A 22 M14E 22 M14A 22 M14A	IS9 Industrial Packard Male Socket I Male Socket I Male Socket I Junior Timer Bajonet DIN 7 Bajonet VG 9 Super Seal Deutsch 3-po Deutsch 4-po QUICKON Flying Leads Cable Gland Cable Steel Cable Plastc others *) e.g. with ca Restrictor 0.6 Restrictors ot Total Error ot Cleand for Op Metal Cone Schrader Ope others (see b	Socket IS Socket IS M 5 / S707 M M12/ S763 M M12/ S763 M M16/ S723 M M18/ S714 M J J 72585 B 5234 B les D les D les D les D 1,0*) F Plastic 1,0 * C 1,0*) F uble length 1.0 m m hers her kygen Use ener 2,9 elow.)	R06 RXX FXX O2C S29 GGG	

AAA -

BBB -

etc.